岩本研究室

研究発表Publication

2024

  1. G. Lu, Y. Ota, and S. Iwamoto, “Topological Laser in Anomalous Quadrupole Topological Phases”,  Laser Photonics Rev. 2024, 2400694 (2024)[web]
  2. H. X. Dinh, A. Balčytis, T. Ozawa, Y. Ota, G. Ren, T. Baba, S. Iwamoto, A. Mitchell, and T. G. Nguyen , “Reconfigurable synthetic dimension frequency lattices in an integrated lithium niobate ring cavity”,  Commun. Phys. 7, 185 (2024) [web]
  3. C. Zhang, Y. Ota, and S. Iwamoto, “Wide-mode-area slow light waveguides in valley photonic crystal heterostructures”,  Opt. Mater. Express 14, 1756 (2024) [web]
  4. N. Pholsen, Y. Ota, and S. Iwamoto, “Design of GaAs microcavity on SiN waveguide for efficient single-photon generation by resonant excitation”,  Mater. Quantum Technol. 4, 026201 (2024) [web]
  5. R. Kawata, A. Fujita, N. Pholsen, S. Iwamoto, and Y. Ota, “High-Q two-dimensional photonic crystal nanocavity on glass with an upper glass thin film”,  Opt. Lett. 49, 2345 (2024) [web]
  6. S. Takahashi, Y. Ashida, H. T. Phan, K. Yamashita, T. Ueda, K. Wakabayashi, and S. Iwamoto, “Microwave hinge states in a simple cubic lattice photonic crystal insulator”,  Phys. Rev. B 109, 125304 (2024) [web]
  7. H. Yoshimi, T. Yamaguchi, S. Ishida, Y. Ota, and S. Iwamoto, “Efficient light couplers to topological slow light waveguides in valley photonic crystals”,  Opt. Express 32, 6382 (2024) [web]
  8. Y. Maeda, H. Nishi, N-P. Diamantopoulos, T. Fujii, T. Aihara, S. Yamaoka, T. Hiraki, K. Takeda, T. Segawa, Y. Ota, S. Iwamoto, Y. Arakawa, and S. Matsuo, “Micro-Transfer-Printed InP-Based Membrane Photonic Devices on Thin-Film Lithium Niobate Platform”,  Journal of Lightwave Technology, 42, 4023 (2024) [web]
  9. Z. Dai, W. Lin, and S. Iwamoto, “Rate equation analysis for deterministic and unidirectional lasing in ring resonators with an S-shaped coupler”,  Jpn. J. Appl. Phys. 63, 02SP54 (2024) [web]

2023

  1. J. Kwoen, N. Morais, W. Zhen, S. Iwamoto, and Y. Arakawa, “All III‐arsenide low threshold InAs quantum dot lasers on InP (001)”,  Electron. Lett. 59, e12920 (2023) [web]
  2. K. Ikeda, T. Liu, Y. Ota, N. Kobayashi, and S. Iwamoto, “Enhanced Magneto-Optical Effects in Epsilon-Near-Zero Indium Tin Oxide at Telecommunication Wavelengths”,  Adv. Optical Mater. 2023, 2301320 (2023) [web]
  3. S. Ji and S. Iwamoto, “Numerical analysis of photon absorption of gate-defined quantum dots embedded in asymmetric bull’s-eye optical cavities”,  Opt. Continuum 2, 2270 (2023) [web]
  4. T. Yamaguchi, H. Yoshimi, M. Seki, M. Ohtsuka, N. Yokoyama, Y. Ota, M. Okano, and S. Iwamoto, “Valley photonic crystal waveguides fabricated with CMOS-compatible process”,  Jpn. J. Appl. Phys. 62, 082002 (2023) [web]
  5. S. Gao, Y. Ota, T. Liu, F. Tian, K. Takeda, and S. Iwamoto, “Faraday rotator based on a silicon photonic crystal slab on a bismuth-substituted yttrium iron garnet thin film”,  Appl. Phys. Express 16, 072003 (2023) [web]
  6. Y. Maeda, T. Aihara, T. Fujii, T. Hiraki, K. Takeda, T. Tsuchizawa, H. Sugiyama, T. Sato, T. Segawa, Y. Ota, S. Iwamoto, Y. Arakawa, and S. Matsuo, “Micro-Transfer-Printed Membrane Distributed Reflector Lasers on Si Waveguide Modulated With 50-Gbit/s NRZ Signal”,  J. Lightwave Technol. 41, 3866 (2023) [web]
  7. S. Takahashi, T. Tajiri, Y. Arakawa, S. Iwamoto, and W. L Vos, “Optical properties of chiral three-dimensional photonic crystals”, Phys. Rev. B 107, 165307 (2023) [web]
  8. S. Gao, Y. Ota, F. Tian, T. Liu, and S. Iwamoto, “Optimizing the optical and magneto-optical response of all-dielectric metasurfaces with tilted side walls”, Opt. Express 31, 13672 (2023) [web]
  9. M. Ezawa, N. Ishida, Y. Ota and S. Iwamoto, “Supersymmetric non-Hermitian topological interface laser”, Phys. Rev. B 107, 085302 (2023) [web]
  10. A. A. Balandin,  S. Iwamoto,  M. A. Loi,  J. Stein, and  L. F. Cohen, “Last 60th salute to the journal”, Appl. Phys. Lett. 122, 020401 (2023) [web]
  11. S. Ji, T. Tajiri, X.F. Liu, H. Kiyama, A. Oiwa, J. Ritzmann, A. Ludwig, A. D. Wieck and S. Iwamoto, “Polarization-independent enhancement of optical absorption in a GaAs quantum well embedded in an air-bridge bull’s-eye cavity with metal electrodes”, Jpn. J. Appl. Phys. 62, SC1018 (2023) [web]
  12. R. Katsumi, Y. Ota, T. Tajiri, S. Iwamoto, K. Ranbir, J. P. Reithmaier, M. Benyoucef and Y. Arakawa, “CMOS-compatible integration of telecom band InAs/InP quantum-dot single-photon sources on a Si chip using transfer printing”, Appl. Phys. Express 16 012004 (2023) [web]

2022

  1. W. Nishiyama,T. Nishimura, M. Nishioka, K. Ueno, S. Iwamoto and K. Nagashio, “Is the Bandgap of Bulk PdSe2Located Truly in theFar-Infrared Region? Determination by Fourier-TransformPhotocurrent Spectroscopy”, Adv. Photonics Res.2022, 2200231 (2022) [web]
  2. K. Kuruma, H. Yoshimi, Y. Ota, R. Katsumi, M. Kakuda, Y. Arakawa and S. Iwamoto, “Topologically-Protected Single-Photon Sources with Topological Slow Light Photonic Crystal Waveguides”, Laser Photonics Rev., 16, 8, 2200077 (2022) [web]
  3. T. Liu, N. Kobayashi, K. Ikeda, Y. Ota, and S. Iwamoto, “Topological Band Gaps Enlarged in Epsilon-Near-Zero Magneto-Optical Photonic Crystals”, ACS Photonics, 9, 5, 1621–1626 (2022) [web], 
  4. N. Ishida, Y. Ota, W. Lin, T. Byrnes, Y. Arakawa and S. Iwamoto, “A large-scale single-mode array laser based on a topological edge mode”, Nanophotonics, vol. 11, no. 9, 2022, pp. 2169-2181. (Published online by De Gruyter (2022) [web]
  5. A. Balčytis, T. Ozawa, Y. Ota, S. Iwamoto,  J. Maeda, and T. Baba, “Synthetic dimension band structures on a Si CMOS photonic platform”, Sci. Adv. 8, eabk0468 (2022) [web]

2021

  1. S. Takahashi, E. Kimura, T. Ishida, T. Tajiri, K. Watanabe, K. Yamashita, S. Iwamoto and Y. Arakawa, “Fabrication of three-dimensional photonic crystals for near-infrared light by micro-manipulation technique under optical microscope observation”, Appl. Phys. Express 15 015001 [web]
  2. (招待論文)太田泰友,  岩本敏,  荒川泰彦「 転写プリント法を用いた量子/古典光源のハイブリッド光集積」, 電子情報通信学会論文誌 C Vol.J104-C   No.12   pp.326-334(2021) [web]
  3. C. F. Fong, Y. Ota, Y. Arakawa, S. Iwamoto, and Y. K. Kato, “Chiral modes near exceptional points in symmetry broken H1 photonic crystal cavities”, Phys. Rev. Research 3, 043096 (2021) (Editors’ Suggestion) [web]
  4. R. Katsumi, Y. Ota, T. Tajiri, M. Kakuda, S. Iwamoto, H. Akiyama, and Y. Arakawa, “Unidirectional output from a quantum-dot single-photon source hybrid integrated on silicon”, Opt. Express  Vol. 29, Issue 23, pp. 37117-37127 (2021) [web]
  5. W. Zhan, J. Kwoen, T. Imoto, S. Iwamoto and Y. Arakawa, “E-Band InAs/GaAs Trilayer Quantum Dot Lasers”, Phys. Status Solidi A 2021, 2100419 (2021) [web]
  6. S. Ji, T. Tajiri, H. Kiyama, A. Oiwa and S. Iwamoto, “Design of bull’s-eye optical cavity toward efficient quantum media conversion using gate-defined quantum dot”,  Jpn. J. Appl. Phys. 60, 102003 (2021) [web]
  7. S. Takahashi, S. Tamaki, K. Yamashita, T. Yamaguchi, T. Ueda, and S. Iwamoto, “Transmission properties of microwaves at an optical Weyl point in a three-dimensional chiral photonic crystal”, Opt. Express, 29, 27127 (2021) [web]
  8. T.H. Xiao, Z. Cheng, Z. Luo, A. Isozaki, K. Hiramatsu, T. Itoh, M. Nomura, S. Iwamoto and K. Goda, “All-dielectric chiral-field-enhanced Raman optical activity”, Nat. Commun. 12,  3062 (2021) [web]
  9. K. Kuruma, B. Pingault, C. Chia, D. Renaud, P. Hoffmann, S. Iwamoto,  C. Ronning and  M. Lončar, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond”,  Appl. Phys. Lett. 118, 230601 (2021) [web]
  10. W. Lin, Y. Ota, Y. Arakawa and S. Iwamoto, “Microcavity-based generation of full Poincare beams with arbitrary skyrmion numbers”, Phys. Rev. Research 3, 023055 (2021) [web]
  11. H. Yoshimi, T. Yamaguchi, R. Katsumi, Y. Ota, Y. Arakawa, and S. Iwamoto, “Experimental demonstration of topological slow light waveguides in valley photonic crystals”, Opt. Express 29, 9, 13441 (2021) [web]
  12. (invited) S. Iwamoto, Y. Ota, and Y. Arakawa, “Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform”, Opt. Mater. Express 11, 2, 319 (2021) [web]

2020

  1. K. Kuruma, Y. Ota, M. Kakuda, S. Iwamoto and Y. Arakawa, “Strong coupling between a single quantum dot and an L4/3 photonic crystal nanocavity”, Appl. Phys. Express 13, 082009 (2020) [web]
  2. T. Tajiri, S. Takahashi, C.A.M. Harterveld, Y. Arakawa, S. Iwamoto and W.L. Vos, “Reflectivity of three-dimensional GaAs photonic band-gap crystals of finite thickness”, Phys. Rev. B101,235303 (2020) [web]
  3. H. Yoshimi, T. Yamaguchi, Y. Ota, Y. Arakawa, and S. Iwamoto, “Slow light waveguides in topological valley photonic crystals”, Opt. Lett. 45, 2648 (2020) [web]
  4. K. Kuruma, Y. Ota, M. Kakuda, S. Iwamoto, and Y. Arakawa, “Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots”, APL Photonics 5, 046106 (2020) [web]
  5. T. Tajiri, Y. Sakai, K. Kuruma, S. M. Ji, H. Kiyama, A. Oiwa, J. Ritzmann, A. Ludwig, A. D. Wieck, Y. Ota, Y. Arakawa, and S. Iwamoto, “Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots”, Jpn. J. Appl. Phys. 59, SGGI05 (2020) [web]
  6. W. Zhan, S. Ishida, J. Kwoen, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Emission at 1.6 μm from InAs Quantum Dots in Metamorphic InGaAs Matrix”, physica status solidi (b) 257, 1900392 (2020) [web]
  7. Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, and S. Iwamoto, “Active topological photonics”, Nanophotonics 9, 547 (2020) (review paper) [web]
  8. R. Katsumi, Y. Ota, A. Osada, T. Tajiri, T. Yamaguchi, M. Kakuda, S. Iwamoto, H. Akiyama, and Y. Arakawa, “In situ wavelength tuning of quantum-dot single-photon sources integrated on a CMOS-processed silicon waveguide”, Appl. Phys. Lett. 116, 041103 (2020) (selected as “Editor’s Pickups”) [web]

2019

  1. S. Li, I. Kim, S. Iwamoto, J. Zang, and J. Yang, “Valley anisotropy in elastic metamaterials”, Phys. Rev. B 100, 195102 (2019) [web]
  2. Zon, S. Thainoi, S. Kiravittaya, A. Tandaechanurat, S. Kanjanachuchai, S. Ratanathammaphan, S. Panyakeow, Y. Ota, S. Iwamoto, and Y. Arakawa, “Photoluminescence properties as a function of growth mechanism for GaSb/GaAs quantum dots grown on Ge substrates”, J. Appl. Phys. 126, 0843019 (2019) [web]
  3. W. Lin, Y. Ota, S. Iwamoto, and Y. Arakawa, “Spin-dependent directional emission from a quantum dot ensemble embedded in an asymmetric waveguide”, Opt. Lett. 44, 3749 (2019) [web]
  4. Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, and S. Iwamoto, “Photonic crystal nanocavity based on a topological corner state”, Optica 6, 786 (2019) [web]
  5. T. Yamaguchi, Y. Ota, R. Katsumi, K. Watanabe, S. Ishida, A. Osada, Y Arakawa and S. Iwamoto, “GaAs valley photonic crystal waveguide with light-emitting InAs quantum dots”, Appl. Phys. Express 12, 62005 (2019) [web]
  6. A. Tamada, Y. Ota, K. Kuruma, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Single Plasmon Generation in an InAs/GaAs Quantum Dot in a Transfer-Printed Plasmonic Microring Resonator”, ACS Photonics 6, 1106 (2019) [web]
  7. R. Katsumi, Y. Ota, A. Osada, T. Yamaguchi, T. Tajiri, M. Kakuda, S. Iwamoto, H. Akiyama and Y. Arakawa, “Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing”, APL Photonics 4, 036105 (2019) [web]
  8. I. Kim, Y. Arakawa, and S. Iwamoto, “Design of GaAs-based valley phononic crystals with multiple complete phononic bandgaps at ultra-high frequency”, Appl. Phys. Express 12, 047001 (2019) [web]
  9. T. Tajiri, S. Takahashi, Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Three-dimensional photonic crystal simultaneously integrating a nanocavity laser and waveguides”, Optica 6, 296 (2019) [web]
  10. A. Osada, Y. Ota, R. Katsumi, M. Kakuda, S. Iwamoto, and Y. Arakawa, “Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip”, Phys. Rev. Appl. 11, 024071 (2019) [web]
  11. Zon, P. Phienlumlert, S. Thainoi, S. Kiravittaya, A. Tandaechanurat, N. Nuntawong, S. Sopitpan, V. Yordsri, C. Thanachayanont, S. Kanjanachuchai, S. Ratanathammaphan, S. Panyakeow, Y. Ota, S. Iwamoto, and Y. Arakawa, “Growth-Rate-Dependent Properties of GaSb/GaAs Quantum Dots on (001) Ge Substrate by Molecular Beam Epitaxy”, Phys. Status Solidi A 216, 1800499 (2019) [web]

2018

  1. S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly Polarized Topological Edge States Derived from Optical Weyl Points in Semiconductor-Based Chiral Woodpile Photonic Crystals”, J. Phys. Soc. Jpn. 87, 123401 (2018) [web]
  2. Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Topological photonic crystal nanocavity laser”, Commun. Phys. 1, 86 (2018) [web]
  3. H. Yoshikawa, J. Kwoen, T. Doe, M. Izumi, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot infrared photodetectors on on-axis Si (100) substrates”, Electron. Lett. 54, 1395 (2018) [web]
  4. C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity”, Opt. Express 26, 21219 (2018) [web]
  5. Q. H. Vo, Y. Ota, K. Watanabe, T. Kageyama, S. Iwamoto, and Y. Arakawa “Two dimensional photonic crystal nanocavities with InAs/GaAs quantum dot active regions embedded by MBE regrowth”, Jpn. J. Appl. Phys. 57, 08PD03 (2018) [web]
  6. Y. Ota, K. Watanabe, M. Kakuda, S. Iwamoto, and Y. Arakawa “Advanced Photonic Crystal Nanocavity Quantum Dot Lasers”(Invited paper), IEICE Trans. Electron. E101-C, 553 (2018) [web]
  7. K. Kuruma, Y. Ota, M. Kakuda, S. Iwamoto, and Y. Arakawa “Time-resolved vacuum Rabi oscillations in a quantum-dot–nanocavity system”, Phys. Rev. B 97, 235448 (2018) [web]
  8. A. Osada, Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa “Transfer-printed quantum-dot nanolasers on a silicon photonic circuit”, Appl. Phys. Express 11, 072002 (2018) [web]
  9. R. Katsumi, Y. Ota, M. Kakuda, S. Iwamoto, and Y. Arakawa “Transfer-printed single-photon sources coupled to wire waveguides”, Optica 5, 691 (2018) [web]
  10. H. Yoshikawa, K. Watanabe, T. Kotani, M. Izumi, S. Iwamoto and Y. Arakawa “Observation of infrared absorption of InAs quantum dot structures in AlGaAs matrix toward high-efficiency solar cells”, Jpn. J. Appl. Phys. 57, 062001 (2018) [web]
  11. J. Tatebayashi, Y. Ota, S. Ishida, M. Nishioka, S. Iwamoto, and Y. Arakawa, “Nanowire-quantum-dot lasers on flexible membranes”, Appl. Phys. Express 11, 065002 (2018) [web]
  12. I. Kim, S. Iwamoto, and Y. Arakawa, “Enhanced photoelastic modulation in silica phononic crystal cavities”, Jpn. J. Appl. Phys. 57, 042002 (2018) [web]
  13. Y. Ota, D. Takamiya, R. Ohta, H. Takagi, N. Kumagai, S. Iwamoto and Y. Arakawa, “Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity”, Appl. Phys. Lett. 112, 093101 (2018) [web]
  14. S. Takahashi, T. Tajiri, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa “High-Q nanocavities in semiconductor-based three-dimensional photonic crystals”, Electronics Letters 54, 305 (2018). [web]
  15. I. Kim, S. Iwamoto, and Y. Arakawa, “Topologically protected elastic waves in one-dimensional phononic crystals of continuous media”, Appl. Phys. Express 11, 017201 (2018). Selected as a Spotlight Paper 2018. [web]

2017

  1. S. Takahashi, Y. Ota, T. Tajiri, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission”, Phys. Rev. B 96 195404 (2017). [web]
  2. A Tamada, Y Ota, K Kuruma, J Ho, K Watanabe, S Iwamoto, Y Arakawa, “Demonstration of lasing oscillation in a plasmonic microring resonator containing quantum dots fabricated by transfer printing”, Japanese Journal of Applied Physics 56 (10), 102001 (2017) [web]
  3. Y Ota, M Kakuda, K Watanabe, S Iwamoto, Y Arakawa, “Thresholdless quantum dot nanolaser”, Optics Express 25 (17), 19981-19994 (2017). [web]
  4. Kenji Kamide, Yasutomo Ota, Satoshi Iwamoto, Yasuhiko Arakawa, “Method for generating a photonic NOON state with quantum dots in coupled nanocavities”, Physical Review A 96 (1), 013853 (2017) [web]
  5. CF Fong, Y Ota, S Iwamoto, Y Arakawa, “Manipulation of dynamic nuclear spin polarization in single quantum dots by photonic environment engineering”, Physical Review B 95 (24), 245423 (2017). [web]
  6. Hiroyuki Takagi, Yasutomo Ota, Naoto Kumagai, Satomi Ishida, Satoshi Iwamoto, Yasuhiko Arakawa, “Enhanced optical Stark shifts in a single quantum dot embedded in an H1 photonic crystal nanocavity”, Applied Physics Express 10 (6), 062002 (2017) [web]
  7. Yasutomo Ota, Rai Moriya, Naoto Yabuki, Miho Arai, Masahiro Kakuda, Satoshi Iwamoto, Tomoki Machida, Yasuhiko Arakawa, “Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity”, Applied Physics Letters 110 (22), 223105 (2017) [web]
  8. Satomi Ishida, Satoshi Kako, Katsuya Oda, Satoshi Iwamoto, Yasuhiko Arakawa, “Temperature dependence of the biaxial tensile strain in suspended Ge cross-shaped microstructuresm”, Japanese Journal of Applied Physics 56 (6S1), 06GF04 (2017) [web]

2016

  1. J.Tatebayashi, S.Kako, J.Ho, Y.Ota, S.Iwamotoa, Y.Arakawa, “Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications”, Journal of Crystal Growth Volume 468, 15 June 2017, Pages 144-148 (2016) [web]
  2. Katsuya Oda, Tadashi Okumura, Junichi Kasai, Satoshi Kako, Satomi Ishida, Satoshi Iwamoto, Yasuhiko Arakawa, “Fabrication of Ge Waveguides by Epitaxial Lateral Overgrowth toward Monolithic Integration of Light Sources”, ECS Transactions 75 (8), 199-209 (2016).[web]
  3. K Kuruma, Y Ota, M Kakuda, D Takamiya, S Iwamoto, Y Arakawa, “Position dependent optical coupling between single quantum dots and photonic crystal nanocavities” Applied Physics Letters 109 (7), 071110 (2016).[web]
  4. Yuan-Hsuan Jhang, Reio Mochida, Katsuaki Tanabe, Keizo Takemasa, Mitsuru Sugawara, Satoshi Iwamoto, Yasuhiko Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60° C”, Optics Express 24 (16), 18428-18435 (2016). [web]
  5. Bongyong Jang, Katsuaki Tanabe, Satoshi Kako, Satoshi Iwamoto, Tai Tsuchizawa, Hidetaka Nishi, Nobuaki Hatori, Masataka Noguchi, Takahiro Nakamura, Keizo Takemasa, Mitsuru Sugawara, Yasuhiko Arakawa, ” A hybrid silicon evanescent quantum dot laser” Applied Physics Express 9 (9), 092102 (2016) [web]
  6. I Kim, S Iwamoto, Y Arakawa “Design of quasi-one-dimensional phononic crystal cavity for efficient photoelastic modulation”,  Japanese Journal of Applied Physics 55 (8S3), 08RD02 (2016).[web]
  7. T Yamamoto, Y Ota, S Ishida, N Kumagai, S Iwamoto, Y Arakawa, “Effect of metal side claddings on emission decay rates of single quantum dots embedded in a sub-wavelength semiconductor waveguide”, Japanese Journal of Applied Physics 55 (8S3), 08RC02 (2016). [web]
  8. S. Iwamoto, S. Takahashi, T. Tajiri, and Y. Arakawa, “Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures”, Photonics 3 (2) 34 (2016). [web]
  9. J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A nanowire-based plasmonic quantum dot laser”, Nano Lett. 16 (4) pp. 2845-2850 (2016). [web]
  10. S. Ishida, S. Kako, K. Oda, T. Ido, S. Iwamoto, and Y. Arakawa, “Suspended germanium cross-shaped microstructures for enhancing biaxial tensile strain”, Jpn. J. Appl. Phys. 55 (4S), 04EH14 (2016).[web]
  11. K. Oda, T. Okumura, J. Kasai, S. Kako, S. Iwamoto, and Y. Arakawa, “Crystallinity improvements of Ge waveguides fabricated by epitaxial lateral overgrowth”, Jpn. J. Appl. Phys. 55 (4S), 04EH06 (2016). [web]
  12. A. Z Al-Attili, S. Kako, M. K. Husain, F. Y. Gardes, S. Iwamoto, Y. Arakawa, and S. Saito, “Tensile strain engineering of germanium micro-disks on free-standing SiO2 beams”, Jpn. J. Appl. Phys. 55 (4S), 04EH02 (2016). [web]
  13. C. F. Fong, Y. Ota, E. Harbord, S. Iwamoto, and Y. Arakawa, “P-shell carriers assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field”, Phys. Rev. B 93 (12), 125306(2016) [web]

2015

  1. S. Sergent, S. Kako, M. Bürger, S. Blumenthal, S. Iwamoto, D.J. As, Y. Arakawa, “Active zinc-blende III–nitride photonic structures on silicon”, Appl. Phys. Express 9(1), 012002 (2015). [web]
  2. T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto and Y. Arakawa: “InAs/GaAs quantum dot lasers with GaP strain-compensation layers grown by molecular beam epitaxy”, Phys. Stat. Sol (a) , DOI: 10.1002/pssa.201532555 (2015).[web]
  3. Q. H. Vo, K. Watanabe, T. Kageyama, S. Iwamoto, Y. Arakawa: “Self-assembled formation of GaAsP nano-apertures above InAs/GaAs quantum dots by the thermal diffusion of phosphorus”, Phys. Stat. Sol. B, (2015)  DOI 10.1002/pssb.201552502 (2015).[web]
  4. K. Kamide, S. Iwamoto, and Y. Arakawa: “Eigenvalue decomposition method for photon statistics of frequency-filtered fields and its application to quantum dot emitters”, Phys. Rev. A, 92, 033833 (2015).[web]
  5. T. Tajiri, S. Takahashi, Y.Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa: “Demonstration of a three-dimensional photonic crystal nanocavity in <110>-layered diamond structure”, Appl. Phys. Lett. 107, 071102 (2015).[web]
  6. Y. Ota, S. Iwamoto, Y. Arakawa: “Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity”, Opt. Lett., 40, 3372 (2015).[web]
  7. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto and Y. Arakawa: “Room-temperature lasing in a single nanowire with quantum dots”, Nature Photonics, 9, 501 (2015).[web]
  8. HZ. Song, K. Takemoto, T. Miyazawa, M. Takatsu, S. Iwamoto, M. Ekawa, T. Yamamoto, Y. Arakawa:” “High quality-factor Si/SiO2-InP hybrid micropillar cavities with submicrometer diameter for 1.55-μm telecommunication band”, Opt. Express, 23, 16264 (2015).[web]
  9. AZ. Al-Attili, S. Kako, MK. Husain, FY. Gardes, H. Arimoto, N. Higashitarumizu, S. Iwamoto, Y. Arakawa, Y. Ishikawa, S. Saito: “Spin-on doping of germanium-on-insulator wafers for monolithic light sources on silicon”, Jpn. J. Appl. Phys., 54, 052101 (2015).[web]
  10. Y. H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa: “InAs/GaAs Quantum Dot Lasers on Silicon-on Insulator Substrates by Metal-Stripe Wafer Bonding”, IEEE Photon. Technol. Lett. 27, 875 (2015).[web]
  11. Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa: “Vacuum Rabi spectra of a single quantum emitter”, Phys. Rev. Lett., 114 (14) 143603 (2015).[web]
  12. Y. H. Hsiao. S. Iwamoto, and Y. Arakawa, “Spontaneous and stimulated Raman scattering in silica-cladded silicon photonic crystal waveguides”, Jpn. J. Appl. Phys. 54, 04DG02 (2015).[web]
  13. X. Liu, T. Shimada, R. Miura, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Localized guided-mode and cavity-mode double resonance in photonic crystal nanocavities”, Phys. Rev. Appl. 3, 014006 (2015).[web]
  14. J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, Y. Arakawa, “Low threshold near infrared GaAs-AlGaAs core-shell nanowire plasmon laser”, ACS Photonics 2, 165 (2015).[web]

2014

  1. R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high efficiency coupling to individual carbon nanotube emitters”, Nat. Commun. 5, 5580 (2014). [web]
  2. K. Kamide, S. Iwamoto, and Y. Arakawa, “Impact of the dark path on quantum dot single photon emitters in small cavities” Phys. Rev. Lett. 113, 143604 (2014). [web]
  3. S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics” (Review Article), Front. Mater. 1(15), 1-15 (2014). [web]
  4. J Tatebayashi, Y Ota, S Ishida, M Nishioka, S Iwamoto, and Y. Arakawa, “Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire”, Appl. Phys. Lett. 105. 103104 (2014). [web]
  5. T Braun, C Schneider, S Maier, R Igusa, S Iwamoto, A Forchel, S Höfling, Y. Arakawa, and M Kamp, “Temperature dependency of the emission properties from positioned In (Ga) As/GaAs quantum dots”, AIP Advances 4, 097128 (2014). [web]
  6. S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto and Y. Arakawa “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal”, Appl. Phys. Lett. 105, 051107 (2014). [web]
  7. J. Ho, S. Iwamoto, and Y. Arakawa, “Design of efficient surface plasmon polariton modulators using graphene”, Jpn. J. Appl. Phys. 53, 08MG01 (2014). [web]
  8. T. Tajiri, S. Takahashi, A. Tandaechanurat, S. Iwamoto, and Y. Arakawa, “Design of a three-dimensional photonic crystal nanocavity based on a <110>-layered diamond structure”, Jpn. J. Appl. Phys. 53, 04EG08 (2014). [web]
  9. Y. Ota, K. Watanabe, S. Iwamoto and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intra-cavity frequency doubling”, Phys. Rev. A 89, 023824 (2014). [web]

2013

  1. Y. Ota, K. Watanabe, S. Iwamoto and Y. Arakawa, “Self-frequency summing in quantum dot photonic crystal nanocavity lasers” , Appl. Phys. Lett. 103, 243115 (2013). [web]
  2. S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotationin in a three-dimensional semiconductor chiral photonic crystal”, Opt. Express 21, 29905 (2013). [web]
  3. E. Harbord, Y. Ota, Y. Igarashi, M. Shirane, N. Kumagai, S. Ohkouchi, S. Iwamoto, S. Yorozu and Y. Arakawa, “Enhancement of Valence Band Mixing in Individual InAs/GaAs Quantum Dots by Rapid Thermal Annealing”, Jpn. J. Appl. Phys. 52 125001 (2013). [web]
  4. J. Kwoen, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “Growth of high‐quality InAs quantum dots embedded in GaAs nanowire structures on Si substrates”, physica status solidi (c) 10, 1496 (2013). [web]
  5. J. Fu, A. Tandaechanurat, S. Iwamoto and Y. Arakawa, “Design of high-Q nanocavity in three dimensional woodpile photonic crystal with vertically mirror-symmetric structure”, Phys. Stat. Sol C 10, 1457(2013). [web]
  6. S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High‐Q AlN ladder‐structure photonic crystal nanocavity fabricated by layer transfer”, physica status solidi (c) 10, 1517 (2013). [web]
  7. H-Z Song, K. Takemoto, T. Miyazawa, M. Takatsu, S. Iwamoto, T. Yamamoto, and Y. Arakawa, “Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 mm from InAs/InP quantum dots.”, Opt. Letters 38 (17), 3241 (2013). [web]
  8. J. Kwoen, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Non-VLS growth of GaAs nanowires on silicon by a gallium pre-deposition technique”, J. Crystal Growth 378, 562 (2013). [web]
  9. S. Ohkouchi, N. Kumagai, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Shape evolution of low density InAs quantum dots in the partial capping process by using As2 source”, J. Crystal Growth  378, 549 (2013). [web]
  10. N. Kumagai, S. Ohkouchi, K. Watanabe, S. Iwamoto, and Y. Arakawa. “Rim formation on non-elongated InAs quantum dots grown by partial cap and annealing process at low temperature”, J. Crystal Growth 378, 558(2013). [web]
  11. Y. Ota, K. Watanabe, S. Iwamoto and Y. Arakawa “Nanocavity-based self-frequency conversion laser”, Opt. Express 21, 19778 (2013). [web]
  12. J. Fu, A. Tandaechanurat, S. Iwamoto, and Y. Arakawa, “Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes”, OPTICS EXPRESS 21 (10)12443 (2013). [web]
  13. J. Tatebayashi, Y. Ota, S. Ishida, M. Nishioka, S. Iwamoto and Y. Arakawa, “Formation and optical properties of multi-stack InGaAs quantum dots embedded in GaAs nanowires by selective metalorganic chemical vapor deposition”, J. Crystal Growth 370, 299 (2013). [web]
  14. Y. H. Hsiao, S. Iwamoto, and Y. Arakawa, “Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes”, Jpn. J. Appl. Phys. 52 , 04CG03  (2013). [web]
  15. R.Ohta, Y. Ota, H.Takagi, N.Kumagai, K.Tanabe, S.Ishida, S.Iwamoto, and Y.Arakawa, “Electro-Mechanical Q Factor Control of Photonic Crystal Nanobeam Cavity”, Jpn. J. Appl. Phys. 52, 04CG01 (2013). [web]

2012

  1. H. Takagi, Y. Ota, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “High Q H1 Photonic Crystal Nanocavities with Efficient Vertical Emission”, Opt. Express 20, 28292 (2012).
  2. M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “Fabrication of AlGaN Two-Dimensional Photonic Crystal Nanocavities by Selective Thermal”, Appl. Phys. Express 5, 126502 (2012).
  3. D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-Based Three-Dimensional Photonic Crystal Nanocavity Laser with InAs Quantum-Dot Gain”, AAppl. Phys. Lett. 101, 191107 (2012).
  4. J. Tatebayashi, Y. Ota, S. Ishida, M. Nishioka, S. Iwamoto, and Y. Arakawa, “Optical Properties of Site-Controlled InGaAs Quantum Dots Embedded in GaAs Nanowires by Selective Metalorganic Chemical Vapor Deposition”, Jpn J. Appl. Phys. 51, 11PE13(2012).
  5. Y. Arakawa, S. Iwamoto, M. Nomura, A. Tandaechanurat, and Y. Ota (Invited), “Cavity Quantum Electrodynamics and Lasing Oscillation in Single Quantum Dot-Photonic Crystal Nanocavity Coupled Systems”, IEEE. Sel. Top. Quantum Electron. 18, 1818 (2012).
  6. E. Harbord, S. Iwamoto, Y. Arakawa, P. Spencer, E. Clarke, and R. Murray, “Influence of p-doping on the temperature dependence of InAs/GaAs quantum dot excited state radiative lifetime”, Appl. Phys. Lett. 101, 183108 (2012).
  7. R. Watahiki, T. Shimada, P. Zhao, S. Chiashi, S. Iwamoto, Y. Arakawa, S. Maruyama, and Y. K. Kato, “Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities”, Appl. Phys. Lett. 101, 141124 (2012).
  8. S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer”, Appl. Phys. Lett. 101, 101106 (2012).
  9. N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands”, New J. Phys. 14, 083035 (2012).
  10. A. Enderlin, Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, “High guided mode-cavity mode coupling for an efficient extraction of spontaneous emission of a single quantum dot embedded in a photonic crystal nanobeam cavity”, Phys. Rev. B 86, 075314 (2012).
  11. T. Tatsumi, K. Tanabe, K. Watanabe, S. Iwamoto, and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on Si substrates by low-resistivity, Au-free metal-mediated wafer bonding”, J. Appl. Phys. 112, 033107 (2012).
  12. J. Tatebayashi, Y. Ota, S. Ishida, M. Nishioka, S. Iwamoto and Y. Arakawa, “Site-controlled formation of InAs/GaAs quantum-dot-in-nanowires for single photon emitters”, Appl. Phys. Lett. 100, 263101 (2012).
  13. S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots”, Appl. Phys. Lett. 100, 121102 (2012).
  14. T. Nakaoka, Y. Tamura, T. Miyazawa, K. Watanabe, Y. Ota, S. Iwamoto, Y. Arakawa, “Wavelength tunable quantum dot single-photon source with a side gate”, Jpn. J. Appl. Phys. 51, 02BJ05 (2012).
  15. S. Iwamoto and Y. Arakawa (Invited), “Enhancement of Light Emission from Silicon by Utilizing Photonic Nanostructures”, IEICE TRANSACTIONS on Electronics E95-C  206 (2012).

2011

  1. A. Tandaechanurat, S. Ishida, D. Guimard, D. Bordel, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing characteristics of a quantum dot 3D photonic crystal nanocavity coupled system: Interaction between fully confined electrons and photons”, AIP Conf. Proc. 1399, 1007 (2011).
  2. Y. Ota, S. Iwamoto, N. Kumagai, Y. Arakawa, “Spontaneous Two-Photon Emission from a Single Quantum Dot”, Phys. Rev. Lett. 107, 233602 (2011).
  3. T. Nakaoka, Y. Tamura, T. Saito, T. Miyazawa, K. Watanabe, Y. Ota, S. Iwamoto, and Y. Arakawa, “Competing influence of an in-plane electric field on the Stark shifts in a semiconductor quantum dot”, Appl. Phys. Lett. 99, 181109 (2011).
  4. S. Ohkouchi, N. Kumagai, M. Shirane, Y. Igarashi, M. Nomura, Y. Ota, S. Yorozu, S. Iwamoto, and Y. Arakawa, “New Method to Isolate and Distribute Photoluminescence Emissions from InAs Quantum Dots over a Wide-Wavelength Range”, Journal of Crystal Growth 323, 250 (2011).
  5. S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, ”Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities”, Appl. Phys. Lett.   98, 171102 (2011).
  6. R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot”, Appl. Phys. Lett. 98, 173104 (2011).
  7. N Kumagai, S Ohkouchi, M Shirane, Y Igarashi, M Nomura, Y Ota, S Yorozu, S. Iwamoto, and Y Arakawa, “Effects of growth temperature of partial GaAs cap on InAs quantum dots in In-flush process for single dot spectroscopy”, Phys. Stat. Sol. (c)8, 248, (2011).
  8. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED”, Phys. Stat. Sol. (c), 8, 340-342 (2011).
  9. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, Y. Arakawa, “Fabrication of electrically pumped InAs/GaAs quantum dot lasers on Si substrates by Au-mediated wafer bonding, Physica Status Solidi (c) 8, 319-321 (2011).
  10. K Konishi, M Nomura, N Kumagai, S Iwamoto, Y Arakawa, M Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures”, Phys. Rev. Lett. 106, 57402 (2011).
  11. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap”, Nature Photonics 5, 91-94 (2011).
  12. K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis”, IEICE Electron Express 8, 596(2011).

2010

  1. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain”, Appl. Phys. Lett., 97, 191108 (2010).
  2. S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier. And Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge type photonic crystal slab”, Physica E. Low-dimensional System and Nanostructures. 42. 2556 (2010).
  3. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Design, fabrication and optical characterization of GaAs photonic crystal nanocavity lasers with InAs quantum dots gain wafer-bonded onto Si substrates”, Physica E 42, 2560 (2010).
  4. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser”, Physica E: Low-dimensional Systems and Nanostructures 42, 2489 (2010).
  5. M. Shirane, Y. Igarashi, Y. Ota, M. Nomura, N. Kumagai, S. Ohkouchi, A. Kirihara, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Charged and neutral biexciton–exciton cascade in a single quantum dot within a photonic bandgap”, Physica E: Low-dimensional Systems and Nanostructures 42, 2563 (2010).
  6. N. Kumagai, S. Ohkouchi, S. Nakagawaa, M. Nomura, Y. Ota, M. Shirane, Y. Igarashi, S. Yorozua, S. Iwamoto, and Y. Arakawa, “Suppression of indefinite peaks in InAs/GaAs quantum dot spectrum by low temperature capping in the indium-flush method”, Phys. E. 42, 2753 (2010).
  7. N Kumagai, S Ohkouchi, M Shirane, Y Igarashi, M Nomura, Y Ota, S Yorozu, S Iwamoto and Y Arakawa, “Neutralization of positively charged excitonic state in single InAs quantum dot by Si delta doping”, J. Phys. Conf. Ser. 245 012088 (2010).
  8. Y. Igarashi, M. Shirane, Y. Ota, M .Nomura, N. Kumagai, S. Ohkouchi, A. Kirihara, S .Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Spin dynamics of excited trion states in a single InAs quantum dot”, Phys. Rev. B, 81, 245304 (2010).
  9. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, Y. Arakawa, “Electrically pumped 1.3 um room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer”, Optics Express 18, 10604 (2010).
  10. Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity”, Appl. Phys. Lett. 96, 171104 (2010).
  11. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity”, Opt. Express, 18, 8144-8150 (2010).
  12. L. Esaki, M. Kitamura, S. Iwamoto, and Y. Arakawa, “Esaki diodes live and learn”, Proceedings of the Japan Academy, Series B 86 no.4 pp.451-453 (2010).
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum dot-nanocavity system”, Nature Physics 6, 279 (2010).

2009

  1. Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu and Y. Arakawa, “Investigation of the spectral triplet in strongly coupled quantum dot–nanocavity system”, Appl. Phys. Express 2 122301 (2009).
  2. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain”, Opt. Express, 17, 15975 (2009).
  3. D. F. Dorfner, S. Iwamoto, M. Nomura, S. Nakayama, J. J. Finley, G. Abstreiter, and Y. Arakawa, “Outcoupling of Light Generated in a Monolithic Silicon Photonic Crystal Nanocavity through a Lateral Waveguide”, Jpn. J. Appl. Phys. 48, 062003 (2009).
  4. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate”, Opt. Express, 17, 7036 (2009).
  5. A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y.Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots”, Appl. Phys. Lett., 94, 171115 (2009).
  6. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain”, Opt. Express, 17, 640 (2009).
  7. JS Xia, R Tominaga, N Usami, S Iwamoto, Y Ikegami, K Nemoto, Y Arakawa, Y Shiraki, “Resonant photoluminescence from Ge self-assembled dots in optical microcavities”, J. Crystal Growth 311, 883 (2009).
  8. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity”, Appl. Phys. Lett. 94, 033102 (2009).

2008

  1. Y. Wakayama, A. Tandaechanurat, S. Iwamoto, and Y. Arakawa, “Design of high-Q photonic crystal microcavities with a graded square lattice for application to quantum cascade lasers”, Optics Express, 16, 21321 (2008).
  2. Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, “Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity”,  Appl. Phys. Lett. 93, 183114 (2008).
  3. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum dot light emission with a three-dimensional photonic crystal nanocavity”, Nature Photonics, 2, 688 (2008).
  4. J. Xia, R. Tominaga, S. Iwamoto, N. Usami, Y. Arakawa, Y. Shiraki, “Ge dots in Optical Microcavities–A Possible Direction for Silicon-based Light Emitting Devices”, ECS Transactions 16, 857 (2008).
  5. Y. Arakawa, S. Iwamoto, S. Kako, M. Nomura, D. Guimard, “Advances in quantum dots for classical and non-classical light sources”, Chinese Opt. Lett. 6, 718 (2008).
  6. M. Nomura, S. Iwamoto, and Y. Arakawa, “Prerequisites of nanocavities for single artificial atom laser”, Phys. Stat. Sol. (c), 5, 2831 (2008).
  7. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large vacuum Rabi splitting in single self-assembled 1uantum dot-nanocavity system”, Appl. Phys. Express, 1, 072102 (2008).
  8. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Ultralow threshold photonic crystal nanocavity laser”, Physica E, 40, 1800 (2008).
  9. L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani and Y. Arakawa, “Two-Dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals”, Nano Lett, 8, 260 (2008).
  10. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness”, Optics Express 16, 448-455 (2008).

2007

  1. S. Iwamoto, A. Gomyo, and Y. Arakawa, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature”, Appl. Phys. Lett. 91, 211104 (2007).
  2. M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor”, Appl. Phys. Lett. 91, 051106 (2007).
  3. M. Nomura, S. Iwamoto, N Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor”, Phys. Rev. B 75, 195313 (2007).
  4. N. Li, M. Arita, S. Kako, M. Kitamura, S. Iwamoto, and Y. Arakawa, “Fabrication and optical characterization of III‐nitride air‐bridge photonic crystal with GaN quantum dots”, physica status solidi (c) 4, 90 (2007).

2006

  1. M. Nomura, S. Iwamoto, T. Yang, S. Ishida, and Y. Arakawa, “Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation”, Appl. Phys. Lett. 89, 241124 (2006).
  2. M. Nomura, S. Iwamoto, M. Nishioka, S. Ishida, and Y. Arakawa, “Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation”, Appl. Phys. Lett. 89, 161111 (2006)
  3. M. Kitamura, S. Iwamoto, and Y. Arakwa, “Resonant-Wavelength Control in Visible-Light Range of Organic Photonic Crystal Nanocavities”, Jpn. J. Appl. Phys. 45, no. 8A, 6112 (2006).
  4. M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida, and Y. Arakawa, “Cavity Resonant Excitation of InGaAs Quantum Dots in Photonic Crystal Nanocavities”, Jpn. J. Appl. Phys. 45, no. 8A, 6091 (2006).
  5. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity”, Opt. Express, 14, 6308 (2006).
  6. M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida, and Y. Arakawa, “Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity”, Appl. Phys. Lett. 88, 141108 (2006)
  7. T. Miyazawa, J. Tatebayashi, S. Hirose, T. Nakaoka, S. Ishida, S. Iwamoto, K. Takemoto, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Development of Electrically Driven Single-Quantum-Dot Device at Optical Fiber Bands”, Jpn. J. Appl. Phys. 45, no. 4 B, 3621 (2006).
  8. S. Iwamoto and Y. Arakawa (Invited), “Advances in photonic crystals with MEMS and with semiconductor quantum dots”, Laser Phys. 16, 223 (2006).
  9. S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, A. Higo, H. Toshiyoshi, H. Fujita, “Observation of micromechanically controlled tuning of photonic crystal line-defect waveguide”, Appl. Phys. Lett. 88, 011104 (2006).
  10. A. Higo, S. Iwamoto, S. Ishida, Y. Arakawa, M. Tokushima, A. Gomyo, H. Yamada, H. Fujita and H. Toshiyoshi, “Development of high-yield fabrication technique for MEMS-PhC devices”, IEICE Electron. Express 3, 39 (2006).

2005

  1. M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced Luminance Efficiency of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals”, Jpn. J. Appl. Phys. 44, no. 4 B, 2844 (2005).
  2. S. Iwamoto, J. Tatebayashi, T. Fukuda, T. Nakaoka, S. Ishida, and Y. Arakawa, “Observation of 1.55 µm Light Emission from InAs Quantum Dots in Photonic Crystal Microcavity”, Jpn. J. Appl. Phys. 44, no. 4 B, 2579 (2005).
  3. M. Kiramura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity”, Appl. Phys. Lett. 87, 151119(2005).
  4. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding”, Opt. Express, 13, 1615 (2005).
  5. M. Kudo, T. Nakaoka S. Iwamoto, and Y. Arakawa, “InAsSb Quantum Dots Grown on GaAs Substrates by Molecular Beam Epitaxy”, Jpn. J. Appl. Phys. 44, no. 1, L45 (2005).

2004

  1. T. Shimura, F. Grappin, P. Delaye, S. Iwamoto, Y. Arakawa, K. Kuroda, G. Roosen, “Simultaneous determination of the index and absorption gratings in multiple quantum well photorefractive devices designed for laser ultrasonic sensor”, Optics Commun. 242, 7 (2004).
  2. T Ide, T Baba, J Tatebayashi, S Iwamoto, T Nakaoka, and Y Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3 K to room temperature” Appl. Ohys. Lett. 85, 1326 (2004).
  3. S. Kako, K. Hoshino, S. Iwamoto, S. Ishida, and Y. Arakawa, “Exciton and biexciton luminescence from single hexagonal GaN/AlN self-assembled quantum dots, Appl Phys. Lett. 85, 64 (2004).
  4. K Jarasiunas, R Aleksiejunas, V Gudelis, L Subacius, M Sudzius, S. Iwamoto, T Shimura, K Kuroda and Y Arakawa, “Spin and carrier relaxation in resonantly excited InGaAs MQWs”, Semicond. Sci. Technol. 19 S339 (2004).
  5. M. Ito, S. Iwamoto, and Y. Arakawa, “Enhancement of Cavity-Q in a Quasi-Three-Dimensional Photonic Crystal”, Jpn. J. Appl. Phys. 43, no. 4 B, 1990 (2004).
  6. S. Iwamoto, J. Tatebayashi, S. Kako, S. Ishida, and Y. Arakawa, “Numerical analysis of DFB lasing action in photonic crystals with quantum dots”, Physica E 21, 814 (2004).
  7. M. Kudo, T. Mishima, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Long-wavelength luminescence from GaSb quantum dots grown on GaAs substrates”, Physica E 21, 275 (2004).
  8. S. Iwamoto and Y. Arakawa (Invited), “Photonic Crystal with Advanced Micro/Nano-Structures : Quantum Dots and MEMS”, IEICE Trans. Electron., E87, 343 (2004).
  9. K. Jarasiunas, V. Gudelis, R. Aleksiejunas, M. Sudzius, S. Iwamoto, M. Nishioka, T. Shimura, K. Kuroda, and Y. Arakawa, “Picosecond dynamics of spin-related optical nonlinearities in InxGa1–xAs multiple quantum wells at 1064 nm”, Appl. Phys. Lett. 84, 1043 (2004).

2003

  1. J. Tatebayashi, S. Iwamoto, S. Kako, S. Ishida, and Y. Arakawa, “Optical Characteristics of Two-Dimensional Photonic Crystal Slab Nanocavities with Self-Assembled InAs Quantum Dots for 1.3 µm Light Emission, ”Jpn. J. Appl. Phys. 42, no. 4 B, 2391(2003)

それ以前の研究論文